Evaluation of Gait in Patients with Spinal Cord Injury at the International Center for Neurological Restoration

Main Article Content

Alexander Echemendía del Valle
Armando Sentmanat Belisón
Bárbara Yumila Noa Pelier
Reinaldo Gómez Pérez

Abstract

Introduction: Spinal cord injury could be considered as any alteration of the spinal cord that can lead to changes in movement, sensitivity, or autonomous functions below the level of the injury. Among the main limitations are gait loss, which, in most cases constitutes the major recovery priority for patients.
Aim: To evaluate the progress of patients with spinal cord injury at the International Center for Neurological Restoration.
Materials and methods: From a total of 60 patients, a sample of 30 patients was selected at random for a study that took place between 2017 and 2019. The individuals met the inclusion criteria, and performed gait actions measured with the gait scale for spinal cord injury, version II. The data collected were processed using SPSS 28.
Results: The results showed statistically significant changes in the sample analyzed by sex, region injured, gait rehabilitation time, and overall status.
Conclusions: The evaluation of gait showed that the related actions taken at the International Center for Neurological Restoration were effective, and led to significant changes in the patients' gait abilities.

Downloads

Download data is not yet available.

Article Details

How to Cite
Echemendía del Valle, A., Sentmanat Belisón, A., Noa Pelier, B. Y., & Gómez Pérez, R. (2023). Evaluation of Gait in Patients with Spinal Cord Injury at the International Center for Neurological Restoration. Sport and Science, 8(1), e4242. https://doi.org/10.34982/2223.1773.2023.V8.No1.001
Section
Artículos Originales

References

Abou, L., Malala, V., Yarnot, R., Alluri, A., & Rice, L. A. (2020). Effects of Virtual Reality Therapy on Gait and Balance Among Individuals With Spinal Cord Injury: A Systematic Review and Meta-analysis. Neurorehabil Neural Repair, 34(5), pp. 375-388. https://www.ncbi.nlm.nih.gov/pubmed/32270736

Aguirre, A., Perez, A., Quinzanos, J., Perez, R., & Barrera, A. (2019). Walking speed is not the best outcome to evaluate the effect of robotic assisted gait training in people with motor incomplete Spinal Cord Injury: A Systematic Review with meta-analysis. J Spinal Cord Med, 42(2), pp. 142-154. https://www.ncbi.nlm.nih.gov/pubmed/29065788

Alajam, R. A., Alqahtanti, A. S., Frederick, J., & Liu, W. (2020). The feasibility of an 8-Week walking training program using a novel assistive gait training device in individuals with spinal cord injury. Disabil Rehabil Assist Technol, pp. 1-10. https://doi.org/10.1080/17483107.2020.1805801

Alashram, A., Annino, G., & Padua, E. (2021). Robot-assisted gait training in individuals with spinal cord injury: A systematic review for the clinical effectiveness of Lokomat. J Clin Neurosci, 91, pp. 260-269. https://www.ncbi.nlm.nih.gov/pubmed/34373038

Atrice, M. B., Morrison, S. A., & McDowell, S. L. (2005). Traumatic spinal cord injury. In D. A. Umphred (Ed.), Neurological rehabilitation. (5 ed., pp. 605-657). Mosby Inc. https://www.nature.com/articles/nrdp201718

Barati, K., Kamyab, M., & Kamali, M. (2020). Comparison of the quality of life in individuals with spinal cord injury wearing either reciprocating gait orthosis or hip knee ankle foot orthosis: a cross-sectional study. Disabil Rehabil Assist Technol, pp. 1-5. https://doi.org/10.1080/17483107.2019.1685014

Behrman, A. L., & Hakerma, S. J. (2007). Physical rehabilitation as an agent for recovery after spinal cord injury. Phys Med Rehabil Clin N Am, 18, pp. 183-202. https://pubmed.ncbi.nlm.nih.gov/17543768/

Benito-Penalva, J., Edwards, D. J., Opisso, E., Cortes, M., Lopez-Blazquez, R., Murillo, N., Costa, U., Tormos, J. M., Vidal-Samso, J., Valls-Sole, J., European Multicenter Study about Human Spinal Cord Injury Study, G., & Medina, J. (2012). Gait training in human spinal cord injury using electromechanical systems: effect of device type and patient characteristics. Arch Phys Med Rehabil, 93(3), pp. 404-412. https://doi.org/10.1016/j.apmr.2011.08.028

Christodoulou, V. N., Varvarousis, D., Theodorou, A., Voulgaris, S., Beris, A., Doulgeri, S., Gelalis, I., & Ploumis, A. (2019). Rehabilitation of the multiple injured patient with spinal cord injury: A systematic review of the literature. Injury, 50(11), pp. 1847-1852. https://doi.org/10.1016/j.injury.2019.07.035

Ditunno-Jr, J. F., Ditunno , P. L., Scivoletto, G., Patrick, M., Dijkers, M., Barbeau, H., Burns, A. S., Marino, R. J., & Schmidt-Read, M. (2013). The Walking Index for Spinal Cord Injury (WISCI/WISCI II): nature, metric properties, use and misuse. Spinal Cord, 51, pp. 346-355. https://pubmed.ncbi.nlm.nih.gov/23459122/

Fulk, G., Schimtz, T. J., & Behrman, A. L. (2007). Traumatic spinal cord injury. In S. B. O´Sullivan (Ed.), Physical rehabilitation-assessment and treatment (pp. 937-998). F.A.Davis Company. https://www.worldcat.org/es/title/physical-rehabilitation-assessment-and-treatment/oclc/29913774

Gedde, M. H., Lilleberg, H. S., Assmus, J., Gilhus, N. E., & Rekand, T. (2019). Traumatic vs non-traumatic spinal cord injury: A comparison of primary rehabilitation outcomes and complications during hospitalization. J Spinal Cord Med, 42(6), pp. 695-701. https://doi.org/10.1080/10790268.2019.1598698

Kanazawa, A., Yoshikawa, K., Koseki, K., Takeuchi, R., & Mutsuzaki, H. (2019). A Consecutive 25-Week Program of Gait Training, Using the Alternating Hybrid Assistive Limb (HAL((R))) Robot and Conventional Training, and Its Effects on the Walking Ability of a Patient with Chronic Thoracic Spinal Cord Injury: A Single Case Reversal Design. Medicina (Kaunas), 55(11). https://doi.org/10.3390/medicina55110746

Mandigo, C. E., Kaiser, M., & Angevine, P. D. (2011). Lesión medular. In L. P. Rowland & T. A. Pedley (Eds.), Neurología de Merritt (12 ed., pp. 1031-1048). Lippincott Williams & Wilkins. (Reprinted from Not in File). https://books.google.com.cu/books/about/Neurolog%C3%ADa_de_Merritt.html?id=cJijcQAACAAJ&redir_esc=y

Manns, P. J., Hurd, C., & Yang, J. F. (2019). Perspectives of people with spinal cord injury learning to walk using a powered exoskeleton. J Neuroeng Rehabil, 16(1), p. 94. https://doi.org/10.1186/s12984-019-0565-1

Midik, M., Paker, N., Bugdayci, D., & Midik, A. C. (2020). Effects of robot-assisted gait training on lower extremity strength, functional independence, and walking function in men with incomplete traumatic spinal cord injury. Turk J Phys Med Rehabil, 66(1), pp. 54-59. https://doi.org/10.5606/tftrd.2020.3316

National Spinal Cord Injury Statistical Center. (2021, Marzo 2021). Facts and Figures at a Glance. Birmingham, AL: University of Alabama at Birmingham.https://medicine.umich.edu/sites/default/files/content/downloads/NSCISC%20SCI%20Facts%20and%20Figures%202021.pdf

Okawara, H., Sawada, T., Matsubayashi, K., Sugai, K., Tsuji, O., Nagoshi, N., Matsumoto, M., & Nakamura, M. (2020). Gait ability required to achieve therapeutic effect in gait and balance function with the voluntary driven exoskeleton in patients with chronic spinal cord injury: a clinical study. Spinal Cord, 58(5), .pp 520-527. https://doi.org/10.1038/s41393-019-0403-0

Richard-Denis, A., Benazet, D., Thompson, C., & Mac-Thiong, J. M. (2020). Determining priorities in functional rehabilitation related to quality of life one-year following a traumatic spinal cord injury. J Spinal Cord Med, 43(2), pp. 241-246. https://doi.org/10.1080/10790268.2018.1517138

Saha, S. (2020). Role of Virtual Reality in Balance Training in Patients with Spinal Cord Injury: A Prospective Comparative Pre-Post Study. Asian Spine J, 14(2), pp. 264-265. https://doi.org/10.31616/asj.2020.0051.r1

Staas, W. E., Formal, C., Freedman, M. K., Fried, G. W., & Schmidt, M. E. (1998). Spinal cord injury and spinal cord injury medicine. In J. A. Delisa & B. M. Gans (Eds.), Rehabilitation Medicine. Principles and practice (pp. 1259-1292). Lippincott-Raven Publisers. https://books.google.com.cu/books/about/Rehabilitation_Medicine.html?id=EdVsQgAACAAJ&utm_source=gb-gplus-shareRehabilitation

Stampacchia, G., Olivieri, M., Rustici, A., D'Avino, C., Gerini, A., & Mazzoleni, S. (2020). Gait rehabilitation in persons with spinal cord injury using innovative technologies: an observational study. Spinal Cord, 58(9), pp. 988-997. https://doi.org/10.1038/s41393-020-0454-2

Tan, K., Koyama, S., Sakurai, H., Teranishi, T., Kanada, Y., & Tanabe, S. (2021). Wearable robotic exoskeleton for gait reconstruction in patients with spinal cord injury: A literature review. J Orthop Translat, 28, pp. 55-64. https://www.ncbi.nlm.nih.gov/pubmed/33717982

Taylor, S. M., Cheung, E. O., Sun, R., Grote, V., Marchlewski, A., & Addington, E. L. (2019). Applications of complementary therapies during rehabilitation for individuals with traumatic Spinal Cord Injury: Findings from the SCIRehab Project. J Spinal Cord Med, 42(5), pp. 571-578. https://doi.org/10.1080/10790268.2018.1481693

Ullah, S., & Rathore, F. A. (2018). Neurological Recovery In Traumatic Spinal Cord Injury: Role Of Multidisciplinary Spinal Rehabilitation In Improving Outcomes. J Ayub Med Coll Abbottabad, 30(4), 620-621. https://www.ncbi.nlm.nih.gov/pubmed/30632352

Wu, C. H., Mao, H. F., Hu, J. S., Wang, T. Y., Tsai, Y. J., & Hsu, W. L. (2018). The effects of gait training using powered lower limb exoskeleton robot on individuals with complete spinal cord injury. J Neuroeng Rehabil, 15(1), pp. 14. https://doi.org/10.1186/s12984-018-0355-1

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.